
DOCUMENT RESUME

ED 078 646 EM 011 175

AUTHOR Kaplow, Roy; And Others
TITLE Computer Assistance for Writing Interactive Programs:

TICS.
INSTITUTION MassachUsetts Inst. of Tech., Cambridge. Dept. of

Metallurgy and Materials Science.
SPONS AGENCY National Science Foundation, Washington, D.C. Office

of Computing Activities..
PUB DATE Apr 73
NOTE 14p.
JOURNAL CIT' ACM SIGCUE Bulletin, Computer Uses in Education;

April 1973

EDRS PRICE MF-$0.65 HC-$3.29
DESCRIPTORS Authors; *Computer Assisted Instruction; *Computer

Programs; Computers; Computer Science; Instructional
Media; *Instructional Programs; Interaction; *On Line
Systems; Program Descriptions; Program Development;
*Programing; Programs

IDENTIFIERS *Teacher Interactive Computer System; TICS

ABSTRACT
- Investigators developed an on-line, interactive

programing system--the Teacher-Interactive Computer System (TICS)-7to
provide assistance to those who were not programers, but nevertheless
wished to write interactive instructional programs. TICS had two
components: an author system and a delivery system. Underlying
assumptions. were that instructional programs required complex logical
structures and could not be written in one linear sequence, that they
must ,be modifiable, that authors should be able to use on- and
off -line modes, that programs required communication with and some
control by students, and that programs should allow different modes
of interactionTICIs structural framework consisted of
interconnected nodes, each containing a linear sequence of actions. A
dynamic data base was maintained and the author language served as
the interface between the author and the system's routines: for
creating, mapping, testing, and modifying programs, for viewing their
structures, and for developing auxiliary information stores.
Automatic maintenance features included space allocation for the -

growing data base, the assignment of identifiers for new items, and
the notation of errors.. PB)

ACM SIGCUE Bulletin - Computer Uses in Education - April 1973

Computer Assistance for Writing Interactive Programs: TICS

by

Roy Kaplow*, David Schneidert, Franklin C. Smith, Jr.*

and William.R. Stensrud*

Department of Metallurgy and Materials Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

U S OEPAR .1 ENT OF HEALTH.
EOUCATION &WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
DIKED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS Or VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE Or
EDUCATION POSITION OR POLICY

The need to make it easier to create the "software" associated with

the general use of "new" technology for education is being increasingly redog-

nized. During the past few years, we have concentrated on a part of the computer

aspect of the technology, to implement a partial solution of the software prob-

lem within that narrower framework. In this paper we describe an on-line and

interactive programming system (TICS,
(1) for Teacher-Interactive-Computer-

System), which is aimed at facilitating the authoring of interactive, instruc-

tional computer programs by persons who are experts on the subject matter being

addressed, but not necessarily programmers. To that purpose, the system provides

a greater degree of computer-assistance for the authoring process itself than has

been afforded in earlier .;anguages and programming.systems of similar orientationS2-15)

TICS is implemented within the M.I.T. Multics time-sharing system(6) in two compo-

nents: an author system and a delivery system. The former provides the tools for

writing, investigating, editing, and_trying out programs. The latter provides a

special environment for student use of the programs.

*
Professor and staff members,

Materials Science.

Graduate Student, Department

respectively, Department of Metallurgy and

of Electrical Engineering.

FILMED FROM BEST AVAILABLE COPY

2

The system reflects a number-of basic premises about the nature of

instructional computer programs and about the needs' of_the authors. The fol-

lowing list; although not inclusive of all the assumptions, indicates the con-

siderations on which the overall design and specific features of the system are

based.

Premises

1. Instructional programs will generally require complex internal logical

structures; the internal structure maybe sufficiently complex that the

author himself will not be able to keep track of it without assistance.

2. It is not sensible to think of an author writing such a program as one

linear sequence of statements.

3. During the authoring of such programs, it should be easy to include a

process of trial -arid- modification, using feedback from students.

4. It should be feasible for persons other than the original authors to

modify and augment programs, possibly months or years later.

Authors may prefer to use an off-line, as well as an on-line mode', in

arbitrarily mixed combitiation, Athile developing one program.

6. Such programs will depend strongly on two-way communication with the student;

for example, we need to have a concern about student input and authour output

which goes far beyond "read-from-terminal" and "write-to-terminal" instructions.

7. In using such programs, the student should not,be "boxed-in" but should have

some explicit control over the interaction flow.

8. Authors may want to use various combinations of different interaction modes,

such as tutorial, socratic, enquiry, questionnaire, gaming, problem- solving,

simulation, and drill.(7) This implies the need for a number of features,

including an information data base, a data base for computational parameters

and results, and access to general purpose subroutines.

3

9. For such programs, there are certain repetitive execution-time features

that can be automated, relieving the author of concern over them, unless he

chooses to override them.
I

There are always a variety of viewpoints from which a complicated

computer system can be described. We think it is useful to consider TICS, in

the light of the preceding premises, and in terms of four particular aspects:

1) the structural framework wnich it provides for the program being authored;

2) the data base in which the current description of the deAred program is

stored; 3) the author language for specifying and studying the program;

4) the "automatic" maintenance and execution-time facilities.

Structural Framework--

The provision of a structural framework for the author's description of

what should happen aurl:g the student's interaction with the program is based on

a number of the given premises, especially the firsf, second, fourth, and ninth.

The mere existence of a structural framework can facilitate the author's design

process. A structural framework can be particularly useful if 1) its subunits

-can correspond to conceptual units in the author's design, 2) it facilitates a

multidemensional addressing scheme for referring to individual items within the

program (which in turn makes it easier to find one's way around the program), and

3) it facilitates implementation of an efficient delivery (execution-time) system

for the students. Generally speaking, the more tightly defined the structural

framework, the more the authoring process can be made easier through computerized

assistance and automated maintenance facilities. At the same time it is necessary

to minimize restrictions on what the author can do and certainly to avoid-a set

format for the student interaction.

In the TICS system we ask the author to imagine that his program consists

of a collection of nodes, interconnected by arbitrary numbers of branches. The

descriptions for the events which can occur during the student's execution of

4

the program are contained within the nodes, and the flow of the interaction is

determined by the branches taken during an actual execution.

Looking inside of a node, one sees the next level of the structural

framework. This is described most simply as a linear list of action sequences

to be conditionally executed, with the possibility of implicit, system-automated

actions superimposed. Each action sequence is specified in the form:

if <condition> is true, then <action> and <action> and ... <action>.

The specific actions can include: outputting something to the terminal and get-

ting a student response (e.g., an "ask" or a "hint"), outputting to the terminal

and going directly on (e.g., a "print"), doing mathematical or character operations

on variables, writing entries in a report file, calling subroutines, and branching

to another node. The <condition>'s can be null, in which case tne action sequence

is, always executed if the execution progresses to that point in that node. If a

condition is specified, it can depenu on: the match between anticipated responses

and the student's response in the current node, on responses given elsewhere in-

the program, on the values of variables, and on elapsed-time. .Among the implicit

operations are the following: if conditionals are phrased in terms of one or

more anticipated responses, then a student response is sought automatically after

the initial "ask" and subsequent "hints"; the full list of conditional action

sequences is repeated each time another response is sought in the same node,

except for the initial output and sequences containing hints (this avoids the

possibility of "looping" within a node); if a student response does not lead to

a hint or branch, the system creates a multiple choice offering out of the

responses anticipated. These conventions imply that a "dead-end" cannot occur

during execution if at least one anticipated response (or a null condition)

necessarily leads to a branch; that condition is munitored by the system

automatically, for every node.

5

There are actually two types of nodes as regards the internode struc-

ture; we might call these ordinary and return type. For the former, all poten-

tial branches-out must be given explicitly (e.g., "go to node such-and-such").

For the return type, potential branches are either explicitly to other nodes

of the same type, or returns to the internal point in the ordinary node which

initiated the "call" to a return-type node. This allows what might be thought of

as an internal sub-process, consisting of a cluster of return-type nodes. These

are useful for such purposes as 1) a single interaction which needs to be called

from different points in the prograr., 2) interactive "hints", i.e., a many-node

interaction effectively contained in a single action sequence, and 3) to define

a "sub-process" execution-time duration for data allocation.

Two formal structural limitations are imposed, mainly to make it feasi-

blefor the system to monitor the internode structure of the program for display

and error-checking purposes. The first is that "calls" to return-type nodes can

only be made from ordinary nodes. The second is that there are no computed

branches; that is, no branches of the form "go to variable", where the value of

variable, to be computed at execution time, might be any node in the program.

The Data Base

The system dynamically maintains an on-line data base description of

the program being authored. The primary directory for the data base is a table

of node descriptor blocks; each node block contains pointers to rings of entries

for the specific execution-related items which nodes contain, such as anticipated

responses, branches in and out, conditional action sequences, and each of the

individual types of actions. The data base also includes, in both the table and

as additional rings, other information which,is useful for the authoring process--

although not needed for an execution-time description. The author can attach to

each node, for example, a name, documentation comments, personal reminders, and

6

keyword phrases. The system automatically maintains flags which indicate the

presence of active intra-node conditions (such as incompleteness, errors, or

attached messages) and rings of inter-node data such as item cross-references

and errors (or possible errors) caused by edits_on cross-referenced items.

One important aspect of the dynamic data base is its accessibility

to the author through an off-line (e.g., punched card) job, as readily as when

he is at a terminal. The off-line facility of the author system allows the

entire author command language to be used, except for the portions which abso-

lutely require the author's immediate presence. The mode may-be used whenever

desired, and mixed with on-line work. Although it utilizes punched cards, the

off-line mode differs from usual "batch-processing", in that the "deck" never

represents more than the new work, the instructions to add new things or to modi-

fy old items in the internally stored dynamic data =base.

The Author Language

The TICS author language is the interface between the author and the

I

operators (or routines) which the system provides: for creating a program; for

providing a map of the program--in-the form of keywords and other doCumentation;

for viewing its structure; for trying out the program--as a student would see it;

for making changes in its content; and for creating an auxilliary information

store for the student, like a dictionary/thesaurus:

The chosen structural framework, and its realization in the dynamic

data base, leads to a multidimensional addressing scheme. for the items in the

program as a natural consequence. Using his own identifiers and those assigned

by the system, the author is able to work in terms of specific items, which is

especially useful when changes or additions are required. Thus, for example, a

particular item in the data base--say an arithmetic assignment action--might be

-referred to as the "third action in the second conditional action sequence of

7

the node named wave set". In another context, the identical item might be

referred to as "the fourth arithmetic assignment in the twenty-fifth node".*

The same addressing schemes are also used by the system, in responding to author

queries, for example, such as "Where is the variable 'var' used?"

Creating a Program

An author can tackle the program all over at once if he chooses, since

commands of all types can be mixed in any order, and the items being addressed can

be anywhere.in the data base. however, the system does assume that he will tend

to work on a node-by-node basis, and uses the concept of an author-selected

working node. That is, the author selects a node and subsequent commands are

assumed to refer to that node until he changes it. The commands for creating

the program itself are probably the simplest part of the language; the following

sequence is intended simply to give its flavor and is shown without the shorthand

conventions that comprise the true language.

set 'working node "name 1"

ask "What is the date of Washington's Birthday?"

if response = "february 22" then print "Yes, that's right!" and go to node "name 2".

if response = "february 19"& response (in node 17) = "old enough" then do flag =

1 + flag and print "Yes, in America they will even change a President's birthday

to make a long weekend." and goto node "name 3"..

if response = "february 14" & variable > 2.3 then call subroutine name (flag,

variable) and hint "That's Valentine's Day, -'name. Please try again".

In an actual on-line session, the system responds to each statement with a notice

of the identifiers assigned to each new item created; it gives warnings (and may

seek verification) of possibly unexpected creations (e.g., of a new anticipated

In both instances, of course, a short-hand code would actually be used.

8

Vd

response in another node); and it checks for consistency with the existing data

base as well as for language syntax.

Although anticipatea responses can be specified as simply as illustrated

above, a variety of alternatives have been provided for greater sophistication.

Special allowance is made for numeric and algebraic responses, and texts can be

finely detailed in terms of exactness required, parts which should or should not

be included, synonomous forms, and other respects. Subroutines may also be used

to operate on the student's responses. In addition, nodes may be designated to

give multiple-choice presentations (among the anticipated responses); to seek a

free-form response; to re-interpret a previous response with respect to a dif-

ferent set of anticipated responses; or to analyze a response in terms of its
.

being a list of responses.

For the text output side, the system tries to provide simple, format-free

options, like that illustrated above, with a simple code for inclusion of varia-

bles (the - 'symbol, illustrated by-Iname in the above example). At the same time,

format control is available when aesired. In accordance with the general phil-

osophy of the system, it trys to minimize the difficulties associated with set-
.

ting up and making alterations on output texts, whether or not the author gives

his own format specifications. In sum, this requires many of the features of a

full text processing system, including system defaults for execution-time format-

ting for variables and automatic margin line adjustment. An analogous sophistica-

tion is needed for graphical and "line-drawing" output.

Providing a Map of the Program

As indicated earlier, the system provides means for attaching documenta-

tion to individual nodes in the form of comments (for long term reference) and

reminders (which are printed out whenever the node is entered, either as the

working node or during a simulation). Unique names may also be attached, and

9

any number of keyword phrases. The language includes commands for attaching

keywords to nodes with individual "hierarchy" levels and for using the keyword

list as a multi-level node directory, if desired. A subset of the keyword-node

assignments can be specified by the author to be a map for the student of the

points in the program to which he can jump arbitrarily. The selected list

serves both to tell the student what the specific parts of the program are

about and also to control the student's mobility.

Viewing the Structure of a Program

The system provides a number of commands for examining the existing

data base and thereby for studying what will happen during a student's execution

of the program. The content of the program may be displayed in tabularized

formats on the author's console or via a remote high speed printer. Graphical

and printed displays of the internoae (tree) branching structure, and of block

diagrams of intranode structures can be obtained. The author may request a

"trace", that is, a playing through of the outputs, student responses and con-

ditional action sequences that would be involved in a path through a given set

of nodes. In addition, the system includes a mode of operation in which the

author can play the role of a student, while the system simulates the execution

of the program, starting at any point. This can be done while the program is

structurally incomplete and even erroneous; the system detects and reports such

conditions during the simulation. The author has available a variety of commands

for controlling the simulation, for examining and setting variable values, and

for setting "stop-points" within nodes for halting the simulation to allow exam-

ination of the instantaneous state of affairs. He may also interrupt a simulation

to use any of the standard TICS requests to create, display, examine or alter any

part of the program. The simulator can also be run in a mode in which the'auxil-

liary information output and the user control capabilities are inhibited; this is

10

useful for providing real student feedback during the entire authoring process.

Editing a Program

The problems with editing a complex program are not completely solved

by providing the needed operators, text editor and author language alone. The

difficult part of the job for the author (and especially for subsequent modifiers

of a program) is to keep track of the interrelationships among different parts

of the program. Often, a change (especially a deletion) made in one place will

have ramifications elsewhere. Obviously, it is not possible to keep track of

all relationships automatically, although the author can do a lot in that regard

with the means provided for documentation and mapping, and for studying the

program structure. On the other hand the system can and does keep track of all

of the explicit cross-references among items, both intra- and inter-node. These

tables (rings in the data base) are available for author examination and--more

importantly--are referred to automatically by the system whenever changes or

deletions are made. When alterations cause certain or possible errors, the

affected items are flagged (with back pointers to the altered or deleted item).

When deletions are the cause of errors, the deleted item is actually saved

(as a ghost) for subsequent reinstatement. Even if the author does not take

the initial warnings seriously, error and warning messages remain attached to

the affected nodes, and those which represent structural incompleteness will

demand subsequent correction.

Creating the Dictionary Thesaurus

The author can build up to five separate dictionary/thesaurus informa-

tion stores. These are subsequently made available to the student, along with

appropriate look-up requests, as an integral attachment to each program. The

author language allows the author to specify, modify and edit entries, consisting

of words and phrases linked to one another in the sense of a thesaurus, and to

11

attach descriptive encyclopedia-like texts to each.such list. Any one word or

phrase can be included in any number of entries, each with its own descriptive

text. These data are primarily intended for use by the student in an on-line

request mode, while he is using the program. It is recognized, however, that

the data might also be conveniently used in hardcopy form, so the system also

provides a well-formatted print-out option for making duplication masters or high-

speed printer copies. In a classical application, these might be analogous to

a glossary in a textbook, but they can also serve as indices, catalogues and

even as more general data bases. One interesting application has occurred in a

language program, for which three dictionaries were used to list the meanings,

pronunciation, and etymology, respectively, of German words used in the program.

It seems, in fact, that such data bases, with the look-up requests that the system

supplies, can themselves comprise an important type of learning interaction, with

very little program structure superimposed by the author.

Automatic Facilities

Many of the automated facilities have been referred to already, parti-

cularly in the discussion of the author language. The most important author -time

dynamic system maintenance features are: to make the allocations of space re-

quired for the dynamic data base as it grows; to assign identifiers for items

as they are created; to note and record all interconnections and cross-references

as they are created; to monitor the structural completeness of each node; and to

note, warn about and flag errors or potential errors caused during editing.

Other maintenance operat)3ns are essentially automatic as far ls the

author is concerned, although he must request them. These include ordering the

data base (i.e., to put everything in systematic order, to increase operational

efficiency and decrease storage requirements); checking the data base for_inte-

grity (i.e., to guard against computer errors); and compressing the data base

12

(i.e., to produce a highly coded copy of only the portions required for the

execution of the program).

After the compression step, the entire delivery system is essentially

automatic from the author's point of view, but much of the control is nonetheless

at his discretion, on a program-by-program basis. The system provides, for

students, a limited-access environment with its for using TICS-authored

programs and any other Multics facilities that the author of a program so stipu-

lates. The system maintains an awareness of all available TICS programs; it

provides a directory and choice of programs for students; it maintains the

individual sets of data for each student's execution of each program; it creates

report files, optional history-of-execution records, and message-to-teacher files

._,

for each student and each program.

During execution the system carries out a variety of implicit opera-

tions within a program itself (such as creating a multiple choice offering when

a student's given response leads nowhere). It also gives the student a number

of "interruptive" requests to use. These are for 1) looking up information in

the dictionaries, 2) searching through the keyword map, 3) jumping to a point

specified by a keyword phrase, 4) backing up to a previous response of his in

the interaction, 5) sending a message to whomever is in charge of the use of

the program, 6) calling any subroutine or Multics subsystem that the author

has stipulated he should be able to use, and 7) stopping the session, with the

optimof continuing later.

Concluding Remarks

We believe that TICS incorporates a number of important features which

make it easier to write interactive programs, particularly programs intended for

instructional purposes. Many of these features haVe evolved during the development

of the system itself. Just as we would advocate that an instructional program

13

should be developed with a lot of feedback from students, we have taken advantage

of the experiences of authors who have tolerated working with a changing system.

In part, this has been possible because most of the changes could be handled

.ithout disrupting the authors' work, even to the point of automatically changing

existing data bases for partially completed programs.

We know that major refinements' and additions will continue to be made

to the system. On the other hand, these are only details in comparison with the

fundamental issue of focusing on the problem of providing as much computer assistance

as,possible to the authoring process.

Acknowledgements

This work has been supported by a grant from the National Science

Foundation, Office of Computing Activities. We would also like to thank a number

of persons who have contributed to the design of the system: Dr. John Brackett,

Dr. Alan Campagna, John P. Linderman, David Pettijohn, Seth Cohen, Lee Scheffler,

Paul Leach, Richard Goldhor, Geoffrey Bunza, Gary Stahl, Samuel Desch, and

Dr. Melvin Rodman.

References

1. Roy Kaplow, D. S. Schneider, F. C. Smith, Jr., and W. R. Stensrud, TICS:

The Author Language and Instruction Manual, Massachusetts Institute of

Technology (1971); TICS, A System for the Authoring and Delivery of Inter-

active Instructional Programs, Seventh Annual Princeton Conference (1973).

2. Swets, J. and Feurzeig, W., "Computer-Aided Instruction", Science 150 (1965);

also see Feurzeig, W., Computer Systems for Teaching Complex Concepts,

Report No. 1742, Bolt, Beranek and Newman, Cambridge, Mass. (1969).

3. FeingOld; S. L.: "PLANIT - A Flexible Language Designed for Computer-Human

Interaction", Proc. AFIPS 1967 Fall Joint Computer Conf. 31, pp. 545-552,

Thompson Book Co., Washington.

14

4. IBM Corp. Courswriter III for System/360, Version 2, Application

Description Manual. Ho. GH20-0587-1 (3rd dd., August 1969).

5. Computer-Based Education Research Laboratory. Tutor User's Manual.

University of Illinois, Urbana, July 1971.

6. F. J. Corbato, J. H. Saltzer, C. T. Klingen Multics--the First Seven

Years, AFIPS Proceedings, 40, p. 571, Spring Joint Computer Conference

(1972); E. I. Organick, the Multics System--an Examination of its

Structure, M.I.T. Press (1972).

7. Roy Kaplow, S. H. Desch, D. O. Pettijohn, M. H. Rodman, and F. C. Smith,

Jr., Illustrations of Conversational, Inquiry, Problem-Solving and

Questionnaire Type Interactions within the TICS System, Seventh 'Annual

Princeton Conference Proceedings (1973).

